本文共 3073 字,大约阅读时间需要 10 分钟。
历史优质文章:
分布式系统架构的第一原则是不要分布!这句话看似矛盾实则揭露了分布式系统的很多特征。
分布式系统的目标与要素
分布式系统的目标是提升系统的整体性能和吞吐量另外还要尽量保证分布式系统的容错性(假如增加10台服务器才达到单机运行效果2倍左右的性能,那么这个分布式系统就根本没有存在的意义)。
即使采用了分布式系统,我们也要尽力运用并发编程、高性能网络框架等等手段提升单机上的程序性能。
分布式系统设计两大思路:中心化和去中心化
中心化设计的问题:
分布式与集群的区别是什么?
CAP仅适用于原子读写的NOSQL场景中,并不适合数据库系统。
现实生活中,大部分人解释这一定律时,常常简单的表述为:“一致性、可用性、分区容忍性三者你只能同时达到其中两个,不可能同时达到”。实际上这是一个非常具有误导性质的说法,而且在CAP理论诞生12年之后,CAP之父也在2012年重写了之前的论文。
当发生网络分区的时候,如果我们要继续服务,那么强一致性和可用性只能2选1。也就是说当网络分区之后P是前提,决定了P之后才有C和A的选择。也就是说分区容错性(Partition tolerance)我们是必须要实现的。
我在网上找了很多文章想看一下有没有文章提到这个不是所谓的3选2,用百度半天没找到了一篇,用谷歌搜索找到一篇比较不错的,如果想深入学习一下CAP就看这篇文章把,我这里就不多BB了:《分布式系统之CAP理论》 :
BASE理论由eBay架构师Dan Pritchett提出,在2008年上被分表为论文,并且eBay给出了他们在实践中总结的基于BASE理论的一套新的分布式事务解决方案。
BASE 是 Basically Available(基本可用) 、Soft-state(软状态) 和 Eventually Consistent(最终一致性) 三个短语的缩写。BASE理论是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的总结,是基于CAP定理逐步演化而来的,它大大降低了我们对系统的要求。
BASE理论的核心思想
即使无法做到强一致性,但每个应用都可以根据自身业务特点,采用适当的方式来使系统达到最终一致性。也就是牺牲数据的一致性来满足系统的高可用性,系统中一部分数据不可用或者不一致时,仍需要保持系统整体“主要可用”。
针对数据库领域,BASE思想的主要实现是对业务数据进行拆分,让不同的数据分布在不同的机器上,以提升系统的可用性,当前主要有以下两种做法:
由于拆分后会涉及分布式事务问题,所以eBay在该BASE论文中提到了如何用最终一致性的思路来实现高性能的分布式事务。
BASE理论三要素
基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性。但是,这绝不等价于系统不可用。
比如:
软状态指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时
最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。
本文主要是简单的介绍了三个常见的概念: 分布式系统设计理念 、 CAP定理 、 BASE理论 ,关于分布式系统的还有很多很多东西。
我是Snailclimb,一个以架构师为5年之内目标的小小白。
欢迎关注我的微信公众号:"Java面试通关手册"(一个有温度的微信公众号,期待与你共同进步~~~坚持原创,分享美文,分享各种Java学习资源):转载地址:http://dawso.baihongyu.com/